RYERSON UNIVERSITY

Faculty of Engineering, Architecture and Science

Department of Mechanical and Industrial Engineering

Course Outline (W2012)

MEC810: Thermal Power Generation

Instructor	Prof. S. B. Dworkin Office: EPH-324 Phone: (416) 979-5000 ext 7311 Email: <u>seth.dworkin@ryerson.ca</u> Website: <u>www.ryerson.ca/~dworkin</u> Office hours: Tuesdays from 1PM to 3PM		
Prerequisites	MEC514, MEC616, MEC701, PCS213, CMN432, ECN801, MEC411, MEC430, MEC431, MTH510		
Compulsory Text	<i>Powerplant Technology; M.M. El-Wakil;</i> McGraw-Hill, 2002. ISBN-13: 978-0-07-287102-9 ISBN-10: 0-07-287102-4		
Reference Texts	 s 1. Steam. Its Generation and Use, 40th ed.; Babcock and Wilcox, 1992. 2. Thermodynamics and Heat Power, 7th ed., I. Granet and M. Bluestein, Prentice Hall, 2003. 3. Power Plant System Design, K. W. Li and A. P. Priddy, John Wiley and Sons, 1985. 		
Calendar Description	Electrical systems loads, peaks, reliability. Types of power plants and interconnec- tivity. Boilers and nuclear reactors. Steam turbine and gas turbine calculations. Aux- iliary equipment: heat exchangers, fuel preparation, water treatment, cooling equip- ment. Combined-cycle power plants. Co-generation. Environmental impact of energy production. Pollution abatement devices. Economics.		
Learning Objectives	 At the end of this course, the successful student will be able to: (1c) Interconnect concepts of various engineering knowledge to design and solve real world engineering problems pertaining to systems and processes. (1d) Use specialized core engineering knowledge to understand and design a specific component, system, or process. (4b) Define design parameter uncertainties and their impacts. (4d) Generate solutions for more complex design engineering problems/systems. (4g) Apply selection/decision-making techniques to more complex design engineering problems/systems. 		

	 tasks as required by the projet 7. (6a) Effectively contribute goals. 8. (7a) Demonstrate accurate us 9. (7d) Use graphics to explain, 10. (8a) Contribute to teamwork 11. (9a) Consider economic, soce 12. (11b) Display awareness of errisks associated with the nimize these risks. 	to multidisciplinary team and achieve project e of technical vocabulary. interpret, and assess information. in an equitable and timely manner. dal, and environmental factors in decisions. environmental, safety, economic, social, and oth- project and ability to respond proactively to mi-	
Course Organization	3 hours of lecture per week for 13 weeks, in 1 sections		
Course	Assignments	10%	
Evaluation	Midterm exam	25%	
	Group design project	25%	
	Final exam	40%	
	Total	100%	
Examinations	Midterm exam in week 7, two hours (covers weeks 1-6). Final exam, during exam period, three hours (covers weeks 1-13).		

Course Content

Торіс	Description
1	Introduction: World, Canada, and Ontario energy snapshot.
	Electricity demand evaluation, loads (annual, daily, based, peak
	loads), etc. Types of power plants and their characteristics
2	Review of thermal power plant thermodynamic cycles: Rankine
	cycle, Brayton cycle, combined cycle, co-generation
3	Optimization of the Rankine cycle: Detailed calculations and com-
	ponent selection.
4	Steam generation: Boilers (types, components, auxiliaries, etc.).
	Fuel preparation systems (coal, oil, and natural gas systems). Design
	consideration and calculations, environmental considerations
5	Steam turbines: Basics of steam turbine design (action and reaction
	and velocity diagrams). Blades and nozzles.
6	Renewable power generation: Wind power. Solar power. Geother-
	mal energy.